Latest MGA0 Excel Routines

	Filename
	xCol, xCols,xColz
	invertList
	filterList
(mod 1)
	DateFix
Selected
	Strip
BlankLines
	
	Help0
Help1

	Mmm37
	YES
	YES
	
	
	YES
	
	

	Caruthers33
	YES
	YES
	YES
	
	YES
	
	YES

	Mga23
	xCol
	
	
	
	
	
	

	Morganisation10
	xCol, xCols
	
	
	
	
	
	

	Kpe19
	YES
	YES
	
	
	
	
	

	Gdr17
	YES
	YES
	YES
	
	
	
	

	iBank
	YES
	YES
	YES
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

Std Utilities: scroll2, notYet, aCal,
RESPONSIVE
<h1 id="logo"></h1>

Above, the h1 element holds the illustration as a background, and the image is aligned according to the container’s background (the heading).

img { max-width: 100%; }

As long as no other width-based image styles override this rule, every image will load in its original size, unless the viewing area becomes narrower than the image’s original width. The maximum width of the image is set to 100% of the screen or browser width, so when that 100% becomes narrower, so does the image.

Essentially, as Jason Grigsby noted, “The idea behind fluid images is that you deliver images at the maximum size they will be used at. You don’t declare the height and width in your code, but instead let the browser resize the images as needed while using CSS to guide their relative size”. It’s a great and simple technique to resize images beautifully.

Note that max-width is not supported in IE, but a good use of width: 100% would solve the problem neatly in an IE-specific style sheet.

iBank - Setting up the Source File

The Source file is the file downloaded from your bank.

Before doing anything, download your data from your bank. Then:

There are 3 separate settings which ensure automated downloads into iBank. Once these are set they never need editing unless your bank changes its download formatting conventions.

1 The download folder.
The folder where all your bank downloads are directed to. Specifying this assists you enormously in locating your download data. The download folder applies to all accounts and so is globally set on the Setup page.

2 File (search) filter
The simplest file filter is ‘*.csv’ (which lists all files ending in ‘.csv.’) and this is the default iBank setting. This is fine if you only have one or two bank accounts but if you operate multiple accounts you will want to search more specifically on download file names as different banks tends to use different file naming conventions.
The default ‘*.csv’ will list all files with the.csv extension in your download folder.
Use the search filter to specify the leading characters of your download file.

3 Import Code (or Algorithm)
The Source file is the file downloaded from your bank. This has to be interpreted into iBank’s format so that no matter how many different banks and bank accounts you have, they may be assimilated in your accounting system.

iBank is the accounting system.

1 The Download Folder
The download folder applies to all accounts and is globally set on the Setup page.
2 File Search Filter (default= ‘*.csv’)
Use the search filter to specify the leading characters of the required download file.
3 Import Algorithm
Code specifying column order of the Source data downloaded from your bank.

46.32.240.45

Sub invertList() '-->.

 Dim vTop As Variant, vEnd As Variant, iTop As Integer, iEnd As Integer

 aCal (0): With Selection: iTop = 1: iEnd = .Rows.Count 'from extendOffice.com

 Do While iTop < iEnd: vTop = .Rows(iTop).Value2: vEnd = .Rows(iEnd).Value2 'v35 **.Value2**

 .Rows(iEnd) = vTop: .Rows(iTop) = vEnd

 iTop = iTop + 1: iEnd = iEnd - 1: Loop: End With: aCal (1)

 'values in source range can cause overflow (ERR6) when loading into variant array. To fix, use .Value2 -

 'returns dates as normal numbers without trying to convert. Good practice=Use .Value2 when reading a range value.

End Sub
Function dupChk(ry As Integer, rx As Integer) '-->. (data2LiveSheet)

 Dim i As Integer, j As Integer, xxx As Integer, dup As Integer, col As Integer, x

 State ("Removing Duplications"): xxx = 0: i = ry: dupChk = 0

 With ThisWorkbook.ActiveSheet: x = xCol("#") - 1 'Chk all cols up to the counter

 While xxx < rx: xxx = xxx + 1

 For j = ry - 1 To 4 Step -1: dup = 0

 'If DateValue(.Cells(j, 1)) = DateValue(.Cells(i, 1)) Then

 'dup = 1: For col = 2 To x: dup = dup - (Trim(.Cells(j, col)) = Trim(.Cells(i, col))): Next

 For col = 1 To x: dup = dup - (Trim(.Cells(j, col)) = Trim(.Cells(i, col))): Next

 If dup = x Then Rows(i).Delete: dupChk = dupChk + 1: Exit For

 'End If:

 Next: If dup <> x Then i = i + 1

 Wend: End With: State ("")

End Function

Sub invertList() '-->readDataFile Old List
 'InvertListOnNewSheet before TransferToLiveSheet

 Dim i As Integer, j As Integer, xxx As Integer, rx As Integer, rng, x

 With ActiveSheet: xxx = .Range("A32000").End(xlUp).Row

 For j = 1 To .Rows(1).Columns.Count: If .Cells(1, j) = "" Then rx = j - 1: Exit For 'BlankHdr.

 Next: If rx = 0 Then Exit Sub

 rng = .Range(.Cells(1, 1), .Cells(xxx, rx)).Value

 For i = 1 To xxx - 1: For j = 1 To rx: .Cells(i + 1, j) = rng(xxx - i + 1, j): Next j, i

 .UsedRange.WrapText = False: .Columns(1).AutoFit: End With

End Sub

Sub formatDate() '-->readDataFile

 Dim i As Integer, j As Integer, xxx As Integer, rx As Integer, rng, x

 With ActiveSheet: xxx = .Range("A32000").End(xlUp).Row

 For i = 2 To xxx: With .Cells(i, "A") 'This works with New Sheet.

 If .NumberFormat = "General" Then .Value = zDate(.Value) Else .Value = xDate(.Value)

 End With: Range("date1").Copy: .Range("A" & i).PasteSpecial (xlPasteFormats)

 Next: End With

End Sub

Sub xDates() '-->getDownloadData.

 'process ActiveSheet so that xDates are added in cols at right.

 Dim ry As Integer, j As Integer, col As String, xxx As Integer, xStr As String, shx, x 'v14 works on TempSheet.

 shx = Range("dataSheet"): xxx = 0: For j = 1 To 3: If shx = Range("shxList").Cells(j) Then xxx = j: Exit For

 Next: If xxx = 0 Then Exit Sub

 If xxx = 3 Then xDatesAccounts Else '-->

 If xxx = 1 Then xStr = "S" Else If xxx = 2 Then xStr = "PQ" 'col containing New xDate!

 ScUp (0): With ActiveSheet: For ry = 2 To .Range("A32000").End(xlUp).Row

 For j = 1 To Len(xStr): col = Mid(xStr, j, 1)

 With .Cells(ry, col): .Value = parseDate(ry, j): Range("date1").Copy: .PasteSpecial (xlPasteFormats): End With

 Next: State (ry): Next: State (""): .Columns("A:B").AutoFit: End With

End Sub

Function xDate(x) '-->formatDate.

 Dim j As Integer, mm As Integer, dd As Integer, yy As Integer 'converts US to UK date

 xDate = "": j = sepX(x): If j < 1 Then Exit Function

 mm = Val(Left(x, j)): x = Mid(x, j + 1): j = sepX(x): If j < 1 Then Exit Function

 dd = Val(Left(x, j)): If dd = 0 Then dd = Month(x): If dd = 0 Then Exit Function

 x = Mid(x, j + 1): If Len(x) < 5 Then j = Len(x) Else j = sepX(x): If j < 1 Then Exit Function

 yy = Val(Left(x, j)): xDate = DateSerial(yy, mm, dd)

End Function

Function zDate(x) '-->formatDate.

 Dim j As Integer, mm As Integer, dd As Integer, yy As Integer 'converts UK date

 zDate = "": j = sepX(x): If j < 1 Then Exit Function

 dd = Val(Left(x, j)): x = Mid(x, j + 1): j = sepX(x): If j < 1 Then Exit Function

 mm = Val(Left(x, j)): If mm = 0 Then mm = Month(x): If mm = 0 Then Exit Function

 x = Mid(x, j + 1): If Len(x) < 5 Then j = Len(x) Else j = sepX(x): If j < 1 Then Exit Function

 yy = Val(Left(x, j)): zDate = DateSerial(yy, mm, dd)

End Function

Function sepX(x) '-->xDate,zDate.

 Dim j As Integer, a As Integer

 sepX = 0: For j = 1 To Len(x): a = InStr(x, Mid("-/ ", j, 1)): If a Then sepX = a: Exit For

 Next

End Function

